How do you integrate #int (x-3x^2)/((x-6)(x-2)(x-5)) # using partial fractions?

1 Answer
Jul 4, 2016

#int(x-3x^2)/((x-6)(x-2)(x-5))dx#

= #-121/8ln(x-6)+5/8ln(x-2)+35/4ln(x-5)+c#

Explanation:

Let us first convert #(x-3x^2)/((x-6)(x-2)(x-5))# into partial fractions.

#(x-3x^2)/((x-6)(x-2)(x-5))hArrA/(x-6)+B/(x-2)+C/(x-5)#

#(x-3x^2)/((x-6)(x-2)(x-5))hArr(A(x-2)(x-5)+B(x-6)(x-5)+C(x-6)(x-2))/((x-6)(x-2)(x-5))#

= #(A(x^2-7x+10)+B(x^2-11x+30)+C(x^2-8x+12))/((x-6)(x-2)(x-5))#

= #(x^2(A+B+C)-x(7A+11B+8C)+(10A+30B+12C))/((x-6)(x-2)(x-5))#

Hence #A+B+C=-3#, #7A+11B+8C=-1# and #10A+30B+12C=0#

Subtracting #7# times of first equation from second and #10# times first from third equation, we get

#4B+C=20# and #20B+C=30# which gives us #B=5/8# and #C=140/8=35/4# and putting these in #A+B+C=-3#, we get #A=-121/8#

Hence, #(x-3x^2)/((x-6)(x-2)(x-5))=-121/(8(x-6))+5/(8(x-2))+35/(4(x-5))#

and #int(x-3x^2)/((x-6)(x-2)(x-5))dx=int[-121/(8(x-6))+5/(8(x-2))+35/(4(x-5))]dx#

= #-121/8ln(x-6)+5/8ln(x-2)+35/4ln(x-5)+c#