How do you integrate #y=(-7x^4)^(8/5)#?
1 Answer
Jul 4, 2016
Explanation:
Require to use
#color(blue)"power rule for integration"#
#int(ax^n)=a/(n+1)x^(n+1)#
#rArrint(-7x^4)^(8/5)dx=int-7x^(32/5)dx# applying the power rule.
#rArrint-7x^(32/5)dx=(-7)/(37/5)x^(37/5)+c=-35/37x^(37/5)+c# where c is the constant of integration.