#lim_(x to 0)(secx-1)/x^2=lim_(x to0)(1/cosx-1)/x^2=#
#lim_(x to 0)((1-cosx)/cosx)/x^2=lim_(x to0)(1-cosx)/(cosx*x^2)=#
#=lim_(x to 0)1/cosx*(1-cosx)/x^2#
#=1/cosx* lim_(x to 0)(1-cosx)/x^2#
as #cos x = 1# and is continuous at #x = 0#
#=lim_(x to 0)(1-cosx)/x^2#
now #cos x = 1 - 2 sin^2( x/2)#
#= lim_(x to 0)(1-( 1 - 2 sin^2 (x/2)))/x^2#
#=lim_(x to 0)(2 sin^2 (x/2))/x^2#
#= 2lim_(x to 0)( sin (x/2))/x * ( sin (x/2))/x#
#= 1/2 lim_(x to 0)( sin (x/2))/(x/2) * ( sin (x/2))/(x/2)#
with #u = x/2#
#= 1/2 lim_(u to 0) ( sin (u))/(u) * ( sin (u))/(u)#
#= 1/2 * 1 * 1#
relying on fundamental limit #lim_{x to 0} (sin u}/u = 1#