A triangle has corners at #(6, 4 )#, ( 1, -2)#, and #( 4, -1)#. If the triangle is reflected across the x-axis, what will its new centroid be?

1 Answer
Jul 5, 2016

#(11/3,-1/3)#

Explanation:

The first step is to find the centroid of the given triangle.

If #(x_1,y_1),(x_2,y_2)" and " (x_3,y_3)# are the vertices of a triangle,
Then
#color(red)"-----------------------------------------------------"#
x-coordinate of centroid #=1/3(x_1+x_2+x_3)#
and y-coordinate of centroid #=1/3(y_1+y_2+y_3)#
#color(red)"------------------------------------------------------"#

here the coordinates of the vertices are (6 ,4), (1 ,-2) and (4 ,-1)

x-coordinate #=1/3(6+1+4)=11/3#

and y-coordinate #=1/3(4-2-1)=1/3#

hence coordinates of centroid #=(11/3,1/3)#

Under a reflection in the x-axis

a point (x ,y) → (x ,-y)

hence 'new' centroid #=(11/3,-1/3)#