How do you use the limit definition of the derivative to find the derivative of #f(x)=7x+32#?

1 Answer
Jul 7, 2016

#[(deltay)/(deltax)]_(limdeltax->0) = (dy)/(dx)=7xx1 = 7#

Explanation:

I prefer to use #delta# instead of #Delta#

Given:#" "f(x)=7x+32#

Write as: #y=7x+32# .....................Equation(1)

Let #x# progress by the small amount of #deltax#
Thus #y# will change by the small amount #deltay#

So after the progression Equation(1) becomes

#y+deltay=7(x+deltax)+32#

#y+deltay=7x+7deltax+32#......................Equation(2)

Subtract Equation(1) from EQuation(2)

#y+deltay=7x+7deltax+32#
#ul(y" "=7x" "+32) larr" Subtract"#
#" "deltay =color(white)(.)0+7deltax+0#

Divide both sides by #deltax#

#(deltay)/(deltax) = (7deltax)/(deltax)#

#[(deltay)/(deltax)]_(limdeltax->0) = (dy)/(dx)=7xx1 = 7#