What is the derivative of #sinx(tanx)#?

1 Answer
Jul 9, 2016

#sinx(sec^2x+1)#

Explanation:

Differentiate using the #color(blue)"product rule"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(f(x)=g(x)h(x)" then" f'(x)=g(x)h'(x)+h(x)g'(x))color(white)(a/a)|)))#

#g(x)=sinxrArrg'(x)=cosx#

#h(x)=tanxrArrh'(x)=sec^2x#
#"--------------------------------------------------"#
Substitute these values into f'(x)

#rArrf'(x)=sinxsec^2x+tanxcosx#

Now #tanxcosx=sinx/cancel(cosx)xxcancel(cosx)=sinx#

#rArrf'(x)=sinxsec^2x+sinx=sinx(sec^2x+1)#