What is the integral of #int tan^5(x)#?

1 Answer
Jul 10, 2016

#int tan^(5)(x) dx = 1/4sec^(4)(x)-sec^(2)(x)+ln|sec(x)|+C#

Explanation:

#int tan^(5)(x) dx#

Knowing the fact that #tan^(2)(x) = sec^2(x)-1#, we can rewrite it as

#int (sec^2(x)-1)^(2) tan(x) dx#, which yields

#int sec^3(x) sec(x) tan(x) dx-2int sec^2(x) tan(x) dx + int tan(x) dx#

First integral:
Let #u=sec(x) -> du = sec(x)tan(x) dx#

Second integral:
Let #u =sec(x) -> du = sec(x)tan(x) dx#

Therefore

#int u^3 du - 2int u du + int tan(x) dx#

Also note that #int tan(x) dx = ln|sec(x)| + C#, thus giving us

#1/4 u^4 - 1/2 u^2 + ln|sec(x)| + C#

Substituting #u# back into the expression gives us our final result of

#1/4sec^(4)(x)-cancel(2)*(1/cancel(2))sec^(2)(x)+ln|sec(x)|+C#

Thus

#int tan^(5)(x) dx = 1/4sec^(4)(x)-sec^(2)(x)+ln|sec(x)|+C#