How do you simplify #sqrt(15x) times sqrt(21x)#?

2 Answers
Jul 11, 2016

#3xsqrt(35)#

Explanation:

Notice that 3 is a factor of both 15 and 21 and so is #x#

#sqrt(3xx5xx x)xxsqrt(3xx7xx x)#

#sqrt(3x)xxsqrt(5)xx sqrt(3x)xxsqrt(7)#

But #sqrt(3x)xxsqrt(3x)=3x#

#3xsqrt(5)sqrt(7) = 3xsqrt(5xx7)=3xsqrt(35)#

#sqrt(15x)*sqrt(21x)=3xsqrt(35)#

Explanation:

#sqrt(15x)*sqrt(21x)#

#sqrt((15x)*(21x))#

#sqrt((3)(5)x*3(7)x)#

#sqrt(3^2*x^2*35)#

#3xsqrt(35)#

God bless....I hope the explanation is useful.