How do you use the definition of a derivative to find the derivative of #g(x) = sqrt(9 − x)#?

1 Answer
Jul 12, 2016

#g'(x) = 1/(2sqrt(9-x))#

Explanation:

From first principles, #g'(x) = Lim_"h->0" (g(x+h) - g(x))/h#

In this example #g(x) = sqrt(9-x)#

Therefore #g'(x) = Lim_"h->0" (sqrt(9-(x+h)) -sqrt(9-x))/h#

Multiply top and bottom by #(sqrt(9-(x+h)) +sqrt(9-x)) ->#

#g'(x) = Lim_"h->0" (9-(x+h) -(9-x))/ (h (sqrt(9-(x+h)) +sqrt(9-x))#

# =Lim_"h->0" h/ (h (sqrt(9-(x+h)) +sqrt(9-x))#

# =Lim_"h->0" cancel h/ (cancel h (sqrt(9-(x+h)) +sqrt(9-x))#

#= 1/ ( (sqrt(9-(x+0)) +sqrt(9-x))#

#=1/(2sqrt(9-x))#