How do you factor #8x^4+x #?

1 Answer
Jul 12, 2016

#x(2x+1)(4x^2-2x+1)#

Explanation:

List factors of both terms.

#8x^4 = 8*color(orange)(x)*x*x*x#

#x=color(orange)(x)#

The common factors are just one #color(orange)(x)#.
So let's pull out one #x# from the expression.

#color(orange)(x)(8x^3+1)#

We still need to factor #(8x^3+1)#. Take note that #a^3+b^3 = (a+b)(a^2-ab+b^2)#.

#x(2x+1)(4x^2-2x+1)#