What is the derivative of this function #y=sin^-1(1/x)#?

1 Answer
Jul 13, 2016

#(-1)/(xsqrt(x^2-1)#

Explanation:

#color(orange)"Reminder" d/dx(sin^-1x)=1/(sqrt(1-x^2)#

here, however, x = #1/x#

Differentiate using the#color(blue)" chain rule combined with power rule"#

#color(orange)" Chain rule"#

#color(red)(|bar(ul(color(white)(a/a)color(black)(d/dx(f(g(x)))=f'(g(x))g'(x))color(white)(a/a)|)))........ (A)#
#"---------------------------------------------------------------"#

#f(g(x))=sin^-1(1/x)rArrf'(g(x))=1/(sqrt(1-(1/x)^2)#

and #g(x)=1/x=x^-1rArrg'(x)=-x^-2=-1/x^2#
#"-----------------------------------------------------------------"#
Substitute these values into (A)

#=1/(sqrt(1-1/x^2))xx-1/x^2#

#=(-1)/(x^2sqrt(1/x^2(x^2-1))#

#=(-1)/(x^2xx1/xsqrt(x^2-1)#

#rArrd/dx(sin^-1(1/x))=(-1)/(xsqrt(x^2-1)#