How do you evaluate #cos ((13pi)/12)#?

1 Answer
Jul 14, 2016

#- sqrt(2 + sqrt3)/2#

Explanation:

#cos ((13pi)/12) = cos (pi/12 + pi) = - cos (pi/12)#
Evaluate cos (pi/12) by the trig identity:
#cos 2a = 2cos^2 a - 1#
#cos ((2pi)/12) = cos (pi/6) = sqrt3/2 = 2cos^2 (pi/12) - 1#
#2cos^2 (pi/12) = 1 + sqrt3/2 = (2 + sqrt3)/2#
#cos^2 (pi/12) = (2 + sqrt3)/4#
#cos (pi/12) = sqrt(2 + sqrt3)/2# ( since #cos (pi/12#) is positive)
There for:
#cos ((13pi)/12) = -cos (pi/12) = - sqrt(2 + sqrt3)/2#