#f'(x) = lim_{h to 0} (f(x+h) - f(x))/(h)#
#=lim_{h to 0} (sqrt(2(x+h)-1) - sqrt(2x-1))/(h)#
next, we times by the conjugate
# =lim_{h to 0} (sqrt(2(x+h)-1) - sqrt(2x-1))/(h) * (sqrt(2(x+h)-1) + sqrt(2x-1))/(sqrt(2(x+h)-1) + sqrt(2x-1))#
#= lim_{h to 0} (1/h) (2(x+h)-1 - (2x-1))/(sqrt(2(x+h)-1) + sqrt(2x-1)) #
#= lim_{h to 0} (1/h) (2h)/(sqrt(2(x+h)-1) + sqrt(2x-1)) #
#= lim_{h to 0} (2)/(sqrt(2(x+h)-1) + sqrt(2x-1)) #
#= (2)/(sqrt(2x-1) + sqrt(2x-1)) #
#= (2)/(2(sqrt(2x-1) ) #
#= 1/(sqrt(2x-1) #