What is the derivative of #y=tan(x+y)#?

1 Answer
Jul 18, 2016

#:. dy/dx=-(1+y^2)/y^2#, or,

#=-csc^2(x+y)#

Explanation:

#y=tan(x+y) rArr tan^-1y=x+y rArr tan^-1y-y=x#

Diff.ing w.r.t. #y#, we have,

#1/(1+y^2)-1=dx/dy#

#:. (1-1-y^2)/(1+y^2)=dx/dy#

#:.-y^2/(1+y^2)=dx/dy#

#:. dy/dx=1/(dx/dy)=-(1+y^2)/y^2#, or,

#dy/dx=-{1+tan^2(x+y)}/tan^2(x+y)=-sec^2(x+y)/tan^2(x+y)=-csc^2(x+y)##