How do you integrate #tan(x)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Euan S. Jul 19, 2016 #int tanx dx = -ln(cosx) + C# Explanation: #tanx = sinx/cosx# #int sinx/cosx dx# Let #u = cosx implies du = -sinxdx# #therefore -int (du)/u = -ln(u) + C# #therefore int tanx dx = -ln(cosx) + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 19783 views around the world You can reuse this answer Creative Commons License