How do you integrate #int lnx/x^5# by integration by parts method?

1 Answer
Jul 20, 2016

#= - 1/(4x^4) ( ln x + 1/4) + C#

Explanation:

tactically, we're going to set the IBP up so that we get to bust up the #ln x# term by differentiating it. integrating #ln x# is a bad way to go.

So we say that

#int lnx/x^5 \ dx =int\ ln x \ (-1/4)d/dx ( 1/x^4) \ dx#

# =int\ ln x d/dx (- 1/(4x^4)) \ dx#

now we apply IBP: #int u v' = uv - int u' v#

so we can crush that #ln x# term

# int\ ln x d/dx (- 1/(4x^4)) \ dx#

#= - 1/(4x^4) ln x - int\ d/dx( ln x) * (- 1/(4x^4)) \ dx#

#= - 1/(4x^4) ln x + 1/4 int\ 1/x * ( 1/(x^4)) \ dx#

#= - 1/(4x^4) ln x + 1/4 int\ 1/(x^5) \ dx#

#= - 1/(4x^4) ln x + 1/4 ( -1/(4x^4) + C)#

#= - 1/(4x^4) ( ln x + 1/4) + C# , et voila!

We can have a quick go the other way by saying that
#int lnx/x^5 \ dx =int\ d/dx (1/2 ln^2 x) (1/x^4) \ dx#

So IBP tells us that equals

# =1/(2x^4) ln^2 x - int\ 1/2 ln^2 x d/dx (1/x^4) \ dx#

# =1/(2x^4) ln^2 x + 2 int\ (ln^2 x )/x^5 \ dx#

dunno where that's going! but i'm stopping there...