#int_(1/a)^a(tan^-1x)/xdx=?#

2 Answers
Jul 20, 2016

#int (tan^{-1}(x)dx)/x = i/2(#PolyLog#(2,-i x)-#PolyLog#(2,ix))#

Explanation:

We know that the #arctan(x)# series representation is given by

#tan^{-1}(x) = sum_{k=0}^oo(-1)^k (x^{2k+1})/(2k+1)# for #abs x < 1#

http://math.stackexchange.com/questions/29649/why-is-arctanx-x-x3-3x5-5-x7-7-dots

then

#tan^{-1}(x)/x = sum_{k=0}^oo(-1)^k (x^{2k})/(2k+1)# and

#int (tan^{-1}(x)dx)/x =sum_{k=0}^oo(-1)^k (x^{2k+1})/(2k+1)^2#

We know also that

PolyLog#(2,x) = sum_{k=1}^oo x^k/k^2#
https://en.wikipedia.org/wiki/Polylogarithm

so finally

#int (tan^{-1}(x)dx)/x = i/2(#PolyLog#(2,-i x)-#PolyLog#(2,ix))#

Jul 21, 2016

Let
# z=lnx=>x=e^z#
# x=a->z=lna and x=1/a->z=-lna#

#and dz==(dx)/x#

#I=int_(1/a)^a(tan^-1x)/xdx#

#=int_(-lna)^(lna)tan^-1(e^z)dz#

#=int_(-lna)^0tan^-1e^zdz+int_0^(lna)tan^-1e^zdz#

#=int_0^(lna)tan^-1e^-zdz+int_0^(lna)tan^-1e^zdz#

#=int_0^(lna)(cot^-1e^z+tan^-1e^z)dz#

#=int_0^(lna)(pi/2)dz#

#=pi/2lna#