What is the antiderivative of # 1 / (x^5)#?

1 Answer
Jul 21, 2016

#"antiderivative "-> -1/(4x^4)+C#

Explanation:

Apply the revers of differentiation

'..................................................................
Example: antiderivative of #x^a-> ( x^(a+1))/(a+1)+C#

This is because #d/(dx) (1/(a+1) x^(a+1)+C) = (a+1)/(a+1) x^(a+1-1) = x^a#

,......................................................................
#color(white)(.)#

Write as #x^(-5)#

#=>"antiderivative" ->1/(-5+1)x^(-5+1) +C" " =" "1/(-4)x^-4+C#

#color(blue)(= -1/(4x^4)+C) color(red)(" "larr" Do not forget the constant."#

,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Check:

#d/(dx) (-1/(4x^4)+C) -> d/(dx) (-(x^(-4))/4+C)#

# = (-4)(-(x^(-5))/4)" " =" "x^(-5)" "=" "1/x^5#

Which is where we started from so ok!

(Think of antiderivative as integration)