int_(1/a)^a(tan^-1x)/xdx=?

1 Answer
Jul 22, 2016

Let
z=lnx=>x=e^z
x=a->z=lna and x=1/a->z=-lna

and dz==(dx)/x

I=int_(1/a)^a(tan^-1x)/xdx

color(red)("Replacing "a" by "lna , 1/a" by "-lna,x" by "e^z and {dx}/x" by "dz)

I=int_(-lna)^(lna)tan^-1(e^z)dz

=int_(-lna)^0tan^-1e^zdz+int_0^(lna)tan^-1e^zdz

=int_0^(lna)tan^-1e^-zdz+int_0^(lna)tan^-1e^zdz

=int_0^(lna)(cot^-1e^z+tan^-1e^z)dz

color(blue)("Applying formula " tan^-1x+cot^-1x=pi/2)

=int_0^(lna)(pi/2)dz

=pi/2lna