What is the antiderivative of #x/(1+x^4) #?

1 Answer

The antiderivative of #x/(1+x^4)# is the integral #int x/(1+x^4) dx#

Let #x^2 = tanu=> u = tan^-1(x^2)#

Hence

#2x dx = sec^2(u) du#

#xdx = (1/2) sec^2(u) du#

now the integral becomes

#I=1/2 int (sec^2(u)) (du) / ( 1 + tan^2(u)) #

#I=1/2 int sec^2(u) (du) / sec^2(u) #

#I=1/2 int du #

#I=(1/2) u + c#

substitute back #u = tan^-1(x^2)#

#I=(1/2) tan^-1(x^2) + c#