How do you write #2cos^2 5-1# as a single trigonometric function?
1 Answer
Jul 24, 2016
cos10
Explanation:
Using the basic
#color(blue)"double angle expansion for cosine"#
We can develop further expansions.
#color(red)(|bar(ul(color(white)(a/a)color(black)(cos2x=cos^2x-sin^2x)color(white)(a/a)|)))........ (A)# along with
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin^2x+cos^2x=1)color(white)(a/a)|)))........ (B)# From (B) we can obtain.
#sin^2x=1-cos^2x" and " cos^2x=1-sin^2x# Substitute these in turn into right side of (A)
#rArr1-sin^2x-sin^2x=1-2sin^2x# and
#cos^2x-(1-cos^2x)=2cos^2x-1#
#rArrcos2x=cos^2x-sin^2x=1-2sin^2x=2cos^2x-1# Using the identity
#cos2x=2cos^2x-1#
#rArr2cos^2 5-1=cos(2xx5)=cos10#