How do you find the value of #sin(theta/2)# given #tantheta=2# and #0<theta<pi/2#?

2 Answers
Jul 24, 2016

#sin(theta/2)=sqrt((sqrt5-1)/(2sqrt5))#

Explanation:

It is observed that in range #0<theta<pi/2# all trigonometric functions are positive. Further as #theta# is in first quadrant, so is #theta/2# hence trigonometric ratios of #teta/2# too are all positive.

Now as #tantheta=2#, #sectheta=sqrt(1+tan^2theta)#

= #sqrt(1+2^2)=sqrt5#

and hence #costheta=1/sqrt5#

Now, #sin(theta/2)=sqrt((1-costheta)/2)#

= #sqrt((1-1/sqrt5)/2)=sqrt((sqrt5-1)/(2sqrt5))#

Jul 24, 2016

#:.sin(theta/2)={(sqrt5-1)sqrt(50+10sqrt5)}/20#

Explanation:

Let us use the Identity# : tantheta=(2tan(theta/2))/(1-tan^2(theta/2)#

Letting, #tan(theta/2)=t, tantheta=(2t)/(1-t^2).............(1)#.

Since, #tantheta=2#, we have, by #(1)#,

#2=(2t)/(1-t^2)rArr1-t^2=t, or, t^2+t-1+0#

#t=(-1+-sqrt(1^2-4*1*(-1)))/2=(-1+-sqrt5)/2#

Let us note that, by data, #0<,theta<,pi/2rArr 0<,theta/2<,pi/4#

#:. theta/2# lies in the First Quadrant, in which, #tan(theta/2)>0,#

and, also, #sin(theta/2)>0#

This means that #tan(theta/2)!=(-1-sqrt5)/2#

#:. tan(theta/2)=(sqrt5-1)/2rArr cot(theta/2)=2/(sqrt5-1)#

Now, #csc^2(theta/2)=1+cot^2(theta/2)=1+4/(sqrt5-1)^2#

#:.csc^2(theta/2)={(5-2sqrt5+1)+4}/(sqrt5-1)^2=(10-2sqrt5)/(sqrt5-1)^2#

#:.sin(theta/2)=+(sqrt5-1)/sqrt(10-2sqrt5)={(sqrt5-1)sqrt(10+2sqrt5)}/{sqrt(10-2sqrt5)sqrt(10+2sqrt5)}#

#={(sqrt5-1)sqrt(10+2sqrt5)}/sqrt(100-20)={(sqrt5-1)sqrt(10+2sqrt5)}/(4sqrt5)#

#={(sqrt5-1)(sqrt5)sqrt(10+2sqrt5)}/(4*5)={(sqrt5-1)sqrt(50+10sqrt5)}/20#