Let us use the Identity# : tantheta=(2tan(theta/2))/(1-tan^2(theta/2)#
Letting, #tan(theta/2)=t, tantheta=(2t)/(1-t^2).............(1)#.
Since, #tantheta=2#, we have, by #(1)#,
#2=(2t)/(1-t^2)rArr1-t^2=t, or, t^2+t-1+0#
#t=(-1+-sqrt(1^2-4*1*(-1)))/2=(-1+-sqrt5)/2#
Let us note that, by data, #0<,theta<,pi/2rArr 0<,theta/2<,pi/4#
#:. theta/2# lies in the First Quadrant, in which, #tan(theta/2)>0,#
and, also, #sin(theta/2)>0#
This means that #tan(theta/2)!=(-1-sqrt5)/2#
#:. tan(theta/2)=(sqrt5-1)/2rArr cot(theta/2)=2/(sqrt5-1)#
Now, #csc^2(theta/2)=1+cot^2(theta/2)=1+4/(sqrt5-1)^2#
#:.csc^2(theta/2)={(5-2sqrt5+1)+4}/(sqrt5-1)^2=(10-2sqrt5)/(sqrt5-1)^2#
#:.sin(theta/2)=+(sqrt5-1)/sqrt(10-2sqrt5)={(sqrt5-1)sqrt(10+2sqrt5)}/{sqrt(10-2sqrt5)sqrt(10+2sqrt5)}#
#={(sqrt5-1)sqrt(10+2sqrt5)}/sqrt(100-20)={(sqrt5-1)sqrt(10+2sqrt5)}/(4sqrt5)#
#={(sqrt5-1)(sqrt5)sqrt(10+2sqrt5)}/(4*5)={(sqrt5-1)sqrt(50+10sqrt5)}/20#