How do you divide ( 2i -4) / ( 7 i -2 ) in trigonometric form?

1 Answer

(2i-4)/(7i-2)=(2sqrt(265))/53[cos 47.48^@+i*sin 47.48^@]

Explanation:

The solution:

2i-4=
sqrt(4+16)[cos (tan^-1 (-1/2))+i*sin (tan^-1 (-1/2))]
sqrt(20)[cos (tan^-1 (-1/2))+i*sin (tan^-1 (-1/2))]

7i-2=
sqrt(4+49)[cos (tan^-1 (-7/2))+i*sin (tan^-1 (-7/2))]

(2i-4)/(7i-2)=
sqrt(20)/sqrt(53)[cos (tan^-1 (-1/2)-tan^-1 (-1/2))+i*sin (tan^-1 (-1/2)-tan^-1 (-1/2))]

(2i-4)/(7i-2)=(2sqrt(265))/53[cos 47.48^@+i*sin 47.48^@]

God bless.....I hope the explanation is useful.