Verify: #-(cotA+cotB)/(cotA-cotB) = sin(A+B)/sin(A-B)# ?

2 Answers
Jul 30, 2016

Expand and simplify RHS then apply identities for #sin(A+-B)#

Explanation:

RHS =#-(cotA+cotB)/(cotA-cotB) = -(cosA/sinA+cosB/sinB)/(cosA/sinA-cosB/sinB)#

RHS=#-(cosAsinB + cosBsinA)/(sinAsinB)/(cosAsinB-cosBsinA)/(sinAsinB)#

RHS=#-(cosAsinB + cosBsinA)/(cancel(sinAsinB))/(cosAsinB-cosBsinA)/(cancel(sinAsinB))#

RHS=#-(cosAsinB + cosBsinA)/(cosAsinB-cosBsinA)#

#=-sin(A+B)/-sin(A-B) = sin(A+B)/sin(A-B) =# LHS

Jul 30, 2016

#LHS=sin(A+B)/sin(A-B)#

#=(sinAcosB+cosAsinB)/(sinAcosB-cosAsinB)#

Dividing both numerator and denominator by #sinAsinB#

#=((sinAcosB)/(SinAsinB)+(cosAsinB)/(sinAsinB))/((sinAcosB)/(sinAsinB)-(cosAsinB)/(sinAsinB))#

#=-((cotA+cotB)/(cotA-cotB))=RHS#

Verified