How do you solve #12(1-4^x)=18#?
1 Answer
Jul 31, 2016
Explanation:
Divide both sides by
#1-4^x = 18/12 = 3/2#
Add
#-1/2 = 4^x#
For any Real value of
If we had wanted
#2^(-1) = 1/2 = 4^x = (2^2)^x = 2^(2x)#
and hence solution
We can make this into a set of Complex solutions for our original problem by adding an odd multiple of
Let
Then:
#4^x = 4^(-1/2+((2k+1)pi i)/ln(4))#
#=4^(-1/2)*4^(((2k+1)pi i)/ln(4))#
#=1/2*(e^ln(4))^(((2k+1)pi i)/ln(4))#
#=1/2*e^(ln(4)*((2k+1)pi i)/ln(4))#
#=1/2*e^((2k+1)pi i)#
#=1/2*(e^(pi i))^(2k+1)#
#=1/2*(-1)^(2k+1)#
#=-1/2#