Given equation
#cscx+cotx=1....(1)#
Now we know
#csc^2x-cot^2x=1#
#=>(cscx+cotx)(cscx-cotx)=1#
#=>1*(cscx-cotx)=1#
#=>(cscx-cotx)=1....(2)#
Adding (1) & (2) we get
#2cscx=2=>cscx=1=csc(pi/2)#
#:.x=pi/2#
Again Subtracting (2) from (1)
#2cotx=0=>cotx=0=cot(pi/2)#
#:.x=pi/2#
For #cotx=0=cot(3pi/2)#
then #x=3pi/2# but this does not satisfy the given equation as #sin(3pi/2)=-1#
#color(red)("So only solution is "x=pi/2)#
Alternative
Given equation
#cscx+cotx=1#
#=>1/sinx+cosx/sinx=1#
#=>(1+cosx)/sinx=1#
#=>sinx-cosx=1#
#=>1/sqrt2*sinx-1/sqrt2*cosx=1/sqrt2#
#=>sin(pi/4)*sinx-sin(pi/4)*cosx=1/sqrt2#
#=>sin(x-pi/4)=sin(pi/4)#
#=>x=pi/4+pi/4=pi/2#
Again
#=>sin(x-pi/4)=1/sqrt2=sin(3pi/4)#
#=>x=(3pi)/4+pi/4=pi#
But this does not satisfy the given equation as #cscpi and cot pi" undefined"#
#color(red)("So only solution is "x=pi/2)#