How do you solve #2sin((3x)/2)+sqrt3=0#?

1 Answer
Aug 7, 2016

#(8pi)/9 + 2kpi#
#(10pi)/9 + 2kpi#

Explanation:

#2sin ((3x)/2) + sqrt3 = 0#
#sin ((3x)/2) = - sqrt3/2#
Trig table of special arcs, and unit circle give 2 arcs (3x)/2:
arc #(3x)/2 = - (2pi)/3# , and arc #(3x)/2 = pi - ((-2pi)/3) = (5pi)/3#
a. Arc #(-2pi)/3# --> is the same as arc #(4pi)/3# (co-terminal)
#(3x)/2 = (4pi)/3# --># x = (4pi/3)(2/3) = (8pi)/9#

b. #(3x)/2 = (5pi)/3# --> #x = (5pi/3)(2/3) = (10pi)/9#
General answers:
#x = (8pi)/9 + 2kpi#
#x = (10pi)/9 + 2kpi#