How do you verify the identity #(1+tan^2theta)/(1-tan^2theta)=1/(2cos^2theta-1)#? Trigonometry Trigonometric Identities and Equations Proving Identities 1 Answer Deepak G. Aug 7, 2016 #L.H.S=R.H.S.# Explanation: Since #sin^2 theta+cos^2 theta=1 # #L.H.S.=(1+tan^2 theta)/(1-tan^2 theta)# #=(1+sin^2 theta/cos^2 theta)/(1-sin^2theta/cos^2 theta) # #=((cos^2 theta+sin^2 theta)/(cancelcos^2 theta))/((cos^2 theta-sin^2 theta)/(cancelcos^2theta)# #=(cos^2 theta+sin^2 theta)/(cos^2 theta-sin^2 theta)# #=1/(cos^2 theta-sin^2 theta)# #=1/(cos^2 theta-(1-cos^2 theta)# #=1/(cos^2 theta+cos^2 theta-1)# #=1/(2cos^2 theta-1)# Hence #L.H.S=R.H.S.# Answer link Related questions What does it mean to prove a trigonometric identity? How do you prove #\csc \theta \times \tan \theta = \sec \theta#? How do you prove #(1-\cos^2 x)(1+\cot^2 x) = 1#? How do you show that #2 \sin x \cos x = \sin 2x#? is true for #(5pi)/6#? How do you prove that #sec xcot x = csc x#? How do you prove that #cos 2x(1 + tan 2x) = 1#? How do you prove that #(2sinx)/[secx(cos4x-sin4x)]=tan2x#? How do you verify the identity: #-cotx =(sin3x+sinx)/(cos3x-cosx)#? How do you prove that #(tanx+cosx)/(1+sinx)=secx#? How do you prove the identity #(sinx - cosx)/(sinx + cosx) = (2sin^2x-1)/(1+2sinxcosx)#? See all questions in Proving Identities Impact of this question 3904 views around the world You can reuse this answer Creative Commons License