How do you simplify and find the restrictions for #(3x-2)/(x+3)+7/(x^2-x-12)#?

1 Answer
Aug 8, 2016

#=((x-3)(3x-5))/((x-4)(x+3)#
Restrictions are
#x!=4#
#x!=-3#

Explanation:

#(3x-2)/(x+3)+7/(x^2-x-12)#
#=(3x-2)/(x+3)+7/(x^2-4x+3x-12)#
#=(3x-2)/(x+3)+7/(x(x-4)+3(x-4)#
#=(3x-2)/(x+3)+7/((x-4)(x+3))#
#=((3x-2)(x-4)+7)/((x-4)(x+3))#
#=(3x^2-12x-2x+8+7)/((x-4)(x+3))#
#=(3x^2-14x+15)/((x-4)(x+3))#
#=(3x^2-9x-5x+15)/((x-4)(x+3))#
#=(3x(x-3)-5(x-3))/((x-4)(x+3))#
#=((x-3)(3x-5))/((x-4)(x+3)#
Restrictions are
#x-4!=0#
or
#x!=4#
#x+3!=0#
or
#x!=-3#