How do you factor #(a+b)^6 - (a-b)^6#?
1 Answer
Explanation:
The difference of squares identity can be written:
#x^2-y^2=(x-y)(x+y)#
The difference of cubes identity can be written:
#x^3-y^3=(x-y)(x^2+xy+y^2)#
The sum of cubes identity can be written:
#x^3+y^3=(x+y)(x^2-xy+y^2)#
Hence:
#x^6-y^6#
#=(x^3)^2-(y^3)^2#
#=(x^3-y^3)(x^3+y^3)#
#=(x-y)(x^2+xy+y^2)(x+y)(x^2-xy+y^2)#
Now let
#(a+b)^6-(a-b)^6#
#= x^6-y^6#
#=(x-y)(x^2+xy+y^2)(x+y)(x^2-xy+y^2)#
#=((a+b)-(a-b))((a+b)^2+(a+b)(a-b)+(a-b)^2)((a+b)+(a-b))((a+b)^2-(a+b)(a-b)+(a-b)^2)#
#=(2b)(a^2+color(red)(cancel(color(black)(2ab)))+color(red)(cancel(color(black)(b^2)))+a^2-color(red)(cancel(color(black)(b^2)))+a^2-color(red)(cancel(color(black)(2ab)))+b^2)(2a)(color(red)(cancel(color(black)(a^2)))+color(red)(cancel(color(black)(2ab)))+b^2-color(red)(cancel(color(black)(a^2)))+b^2+a^2-color(red)(cancel(color(black)(2ab)))+b^2)#
#=4ab(3a^2+b^2)(a^2+3b^2)#