What is #int sin^4xdx #? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Konstantinos Michailidis Aug 10, 2016 We know that #sin^2x=1/2(1-cos2x)# and #cos^2 2x=1/2*(1+cos4x)# Hence #int sin^4xdx=int (1/2(1-cos2x))^2dx= 1/4*int(1-2cos2x+cos^2 2x)dx= 1/4*int1dx-2*1/4intcos2xdx+1/4intcos^2 2xdx= 1/4*x-1/4*sin2x+1/4*int((1+cos4x)/2)dx= 1/4*x-1/4*sin2x+1/8*x+1/32*sin(4x)+c# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 2262 views around the world You can reuse this answer Creative Commons License