How do you find the antiderivative of #sin(x)cos(x)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Ratnaker Mehta Aug 11, 2016 #-1/4cos2x+C#. Explanation: #I-intsinxcosxdx=1/2int2sinxcosxdx=1/2intsin2xdx# #=1/2(cos(2x)/2)=-1/4cos2x+C#. Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1032 views around the world You can reuse this answer Creative Commons License