How do you use the rational roots theorem to find all possible zeros of #F(X) = 6x^4 + 2x^3 - 6x^2 + 3x - 5 #?
1 Answer
#x_1 = 1/18(-8+root(3)(2510+54sqrt(2153))+root(3)(2510-54sqrt(2153)))#
and two related Complex zeros.
Explanation:
#F(x) = 6x^4+2x^3-6x^2+3x-5#
By the rational root theorem, any rational zeros of
That means that the only possible rational zeros are:
#+-1/6, +1/3, +-1/2, +-5/6, +-1, +-5/3, +-5/2, +-5#
Notice that the sum of the coefficients of
#F(1) = 6+2-6+3-5=0#
So
#6x^4+2x^3-6x^2+3x-5#
#=(x-1)(6x^3+8x^2+2x+5)#
None of the remaining possible rational zeros work, so let's focus on the cubic:
#f(x) = 6x^3+8x^2+2x+5#
Descriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 256-192-10240-24300+8640 = -25836#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=972f(x)=5832x^3+7776x^2+1944x+4860#
#=(18x+8)^3-84(18x+8)+5020#
#=t^3-84t+5020#
where
Cardano's method
We want to solve:
#t^3-84t+5020=0#
Let
Then:
#u^3+v^3+3(uv-28)(u+v)+5020=0#
Add the constraint
#u^3+21952/u^3+5020=0#
Multiply through by
#(u^3)^2+5020(u^3)+21952=0#
Use the quadratic formula to find:
#u^3=(-5020+-sqrt((5020)^2-4(1)(21952)))/(2*1)#
#=(5020+-sqrt(25200400-87808))/2#
#=(5020+-sqrt(25112592))/2#
#=(5020+-108sqrt(2153))/2#
#=2510+-54sqrt(2153)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(2510+54sqrt(2153))+root(3)(2510-54sqrt(2153))#
and related Complex roots:
#t_2=omega root(3)(2510+54sqrt(2153))+omega^2 root(3)(2510-54sqrt(2153))#
#t_3=omega^2 root(3)(2510+54sqrt(2153))+omega root(3)(2510-54sqrt(2153))#
where
Now
#x_1 = 1/18(-8+root(3)(2510+54sqrt(2153))+root(3)(2510-54sqrt(2153)))#
#x_2 = 1/18(-8+omega root(3)(2510+54sqrt(2153))+omega^2 root(3)(2510-54sqrt(2153)))#
#x_3 = 1/18(-8+omega^2 root(3)(2510+54sqrt(2153))+omega root(3)(2510-54sqrt(2153)))#