What is #lim x->2# of #(x^3-8)/(x-2)#?

2 Answers
Aug 15, 2016

#12#

Explanation:

#lim_(x->2) (x^3-8)/(x-2)#

it's #0/0# indeterminate so you can l'Hopital it, if you like, but we can pursue it in other ways.

if we set #h = x - 2# or #x = 2+h#, where clearly #0< abs(h) "<<" 1#

then #lim_(x->2) (x^3-8)/(x-2) #

#= lim_(h->0) ((2+h)^3-8)/(h) #

#= lim_(h->0) ((2(1+h/2))^3-8)/(h) #

#= lim_(h->0) (8(1+h/2)^3-8)/(h) #

and by binomial expansion
#= lim_(h->0) (8(1+3* h/2 + O(h^2))-8)/(h) #

#= lim_(h->0) (8+12 h + O(h^2)-8)/(h) #

#= lim_(h->0) 12 + O(h) #

#=12#

Aug 22, 2016

#12#

Explanation:

Recall the difference of cubes identity:

#a^3-b^3=(a-b)(a^2+ab+b^2)#

Note, too, that the numerator is expressible as a difference of cubes:

#x^3-8=x^3-2^3=(x-2)(x^2+x(2)+2^2)#

#=(x-2)(x^2+2x+4)#

So, we see that:

#lim_(xrarr2)(x^3-8)/(x-2)=lim_(xrarr2)(color(red)cancel(color(black)((x-2)))(x^2+2x+4))/color(red)cancel(color(black)((x-2)#

#=lim_(xrarr2)(x^2+2x+4)#

#=2^2+2(2)+4#

#=4+4+4#

#=12#