What is #lim x->2# of #(x^3-8)/(x-2)#?
2 Answers
Explanation:
it's
if we set
then
and by binomial expansion
Explanation:
Recall the difference of cubes identity:
#a^3-b^3=(a-b)(a^2+ab+b^2)#
Note, too, that the numerator is expressible as a difference of cubes:
#x^3-8=x^3-2^3=(x-2)(x^2+x(2)+2^2)#
#=(x-2)(x^2+2x+4)#
So, we see that:
#lim_(xrarr2)(x^3-8)/(x-2)=lim_(xrarr2)(color(red)cancel(color(black)((x-2)))(x^2+2x+4))/color(red)cancel(color(black)((x-2)#
#=lim_(xrarr2)(x^2+2x+4)#
#=2^2+2(2)+4#
#=4+4+4#
#=12#