How do you use the definition of a derivative to find the derivative of #1/x^2#?

1 Answer
Aug 16, 2016

We use the formula #f'(x) = lim_(h -> 0) (f(x + h) - f(x))/h# for "definition of derivative" problems.

Explanation:

#f'(x) = lim_(h ->0)(1/(x + h)^2 - 1/x^2)/h#

#f'(x) = lim_(h ->0) ((x^2 - (x + h)^2)/((x +h )^2(x^2)))/h#

#f'(x) = lim_(h -> 0) ((x^2 - (x^2 + 2xh + h^2))/(((x + h)^2)(x^2)))/h#

#f'(x) = lim_(h->0) (-2xh - h^2)/(h(x + h)^2x^2)#

#f'(x) = lim_(h -> 0) (h(-2x - h))/(h(x + h)^2(x^2)#

#f'(x) = lim_(h->0) (-2x - h)/((x + h)^2x^2)#

We can now evaluate:

#f'(x) = (-2x - 0)/((x + 0)^2x^2)#

#f'(x) = (-2x)/x^4#

#f'(x) = -2/x^3#

Hopefully this helps!