Question #00e9a

1 Answer
Aug 16, 2016

#0; pi/3; (2pi)/3; and (4pi)/3#

Explanation:

Apply the trig identity:
#sin a + sin b = 2sin ((a +b)/2)cos ((a - b)/2)#
#sin 2x + sin 4x = 2sin ((6x)/2)cos ((2x)/2) = 2sin 3x.cos x #
#(sin 2x + sin 4x) + sin 3x = sin 3x(2cos x + 1) = 0#
Either one of the 2 factors must be zero.
a. sin 3x = 0 .
Trig table give 3 solution arcs:
3x = 0 --> x = 0
#3x = pi# --> #x = pi/3#
#3x = 2pi# --> #x = (2pi)/3#
b. 2cos x + 1 = 0 --> #cos x = - 1/2#
Trig table and unit circle give 2 solution arcs:
#x = 2pi/3# and #x = - (2pi)/3# --> or #x = (4pi)/3# (co-terminal)
Answers for #(0, 2pi)#:
#0, pi/3, (2pi)/3, (4pi/3)#