How do you integrate #int4sec4x*tan4x*sec^4 4x# using substitution?
1 Answer
Aug 16, 2016
Well, let's rewrite this, and you may see something.
Let
#color(blue)(int 4sec4xtan4xsec^4 (4x)dx)#
#= int secutanusec^4(u)du#
So now... let
#=> int (secu)^4secutanudu#
#= int v^4dv#
#= v^5/5#
Back-substitute to get:
#= sec^5(u)/5#
#= color(blue)(sec^5(4x)/5 + C)#