How do you factor #((x-y)^3) +8#?
1 Answer
Aug 18, 2016
#=(x-y+2)(x^2-2xy+y^2-2x+2y+4)#
#=(x-y+2)(x-y-1+sqrt(3)i)(x-y-1-sqrt(3)i)#
Explanation:
The sum of cubes identity can be written:
#a^3+b^3=(a+b)(a^2-ab+b^2)#
Use this with
#(x-y)^3+8#
#=(x-y)^3+2^3#
#=((x-y)+2)((x-y)^2-(x-y)(2)+2^2)#
#=(x-y+2)(x^2-2xy+y^2-2x+2y+4)#
If you allow Complex coefficients, then this factors further as:
#=(x-y+2)(x-y+2omega)(x-y+2omega^2)#
where
#=(x-y+2)(x-y-1+sqrt(3)i)(x-y-1-sqrt(3)i)#