How do you solve #log_2x+log_2 3=3#?

2 Answers
Aug 21, 2016

I found: #x=8/3#

Explanation:

You can condense the two logs and write:
#log_2(3x)=3#
use the definition of log and write:
#3x=2^3#
#3x=8#
#x=8/3#

Aug 21, 2016

#x=8/3#

Explanation:

As #2^3=8#, we have #log_2 8=3#, hence

#log_2 x+log_2 3=3=log_2 8# or

#log_2(3×x)=log_2 8# or

#3x=8# or

#x=8/3#