Question #e8ab5

3 Answers
Aug 21, 2016

#cos(x+y)=(a^2+b^2)/2-1#

Explanation:

First, recall what #cos(x+y)# is:
#cos(x+y)=cosxcosy+sinxsiny#

Note that:
#(sinx+siny)^2=a^2#
#->sin^2x+2sinxsiny+sin^2y=a^2#

And:
#(cosx+cosy)^2=b^2#
#->cos^2x+2cosxcosy+cos^2y=b^2#

Now we have these two equations:
#sin^2x+2sinxsiny+sin^2y=a^2#
#cos^2x+2cosxcosy+cos^2y=b^2#

If we add them together, we have:
#sin^2x+2sinxsiny+sin^2y+cos^2x+2cosxcosy+cos^2y=a^2+b^2#

Don't let the size of this equation throw you off. Look for identities and simplifications:
#(sin^2x+cos^2x)+(2sinxsiny+2cosxcosy)+(cos^2y+sin^2y)=a^2+b^2#

Since #sin^2x+cos^2x=1# (Pythagorean Identity) and #cos^2y+sin^2y=1# (Pythagorean Identity), we can simplify the equation to:
#1+(2sinxsiny+2cosxcosy)+1=a^2+b^2#
#->(2sinxsiny+2cosxcosy)+2=a^2+b^2#

We can factor out a #2# twice:
#2(sinxsiny+cosxcosy)+2=a^2+b^2#
#->2((sinxsiny+cosxcosy)+1)=a^2+b^2#

And divide:
#(sinxsiny+cosxcosy)+1=(a^2+b^2)/2#

And subtract:
#sinxsiny+cosxcosy=(a^2+b^2)/2-1#

Finally, since #cos(x+y)=cosxcosy+sinxsiny#, we have:
#cos(x+y)=(a^2+b^2)/2-1#

Aug 21, 2016

Given

#sinx+siny=a.......(1)#

#cosx+cosy=b.......(2)#

Squaring and adding (1) & (2)

#(cosx+cosy)^2+(sinx+siny)^2= a^2+b^2#

#=>2(cosxcosy+sinxsiny)+2=a^2+b^2#

#=>2cos(x-y)=a^2+b^2-2....(3)#

Squaring and Subtracting (1) from(2)

#(cosx+cosy)^2-(sinx+siny)^2= b^2-a^2#

#=>2cos(x+y)+cos^2x-sin^2x+cos^2y-sin^2y=b^2-a^2#

#=>2cos(x+y)+cos2x+cos2y=b^2-a^2#

#=>2cos(x+y)+2cos(x+y)cos(x-y)=b^2-a^2#

#=>cos(x+y)(2+2cos(x-y))=b^2-a^2#

(#"From (3) "2cos(x-y)=a^2+b^2-2#)

#=>cos(x+y)(2+b^2+a^2-2)=b^2-a^2#

#=>cos(x+y)(b^2+a^2)=b^2-a^2#

#=>cos(x+y)=(b^2-a^2)/(b^2+a^2)#

Aug 21, 2016

#cos(x+y)=(b^2-a^2)/(b^2+a^2)#.

Explanation:

#sinx+siny=a rArr 2sin((x+y)/2)cos((x-y)/2)=a.........(1)#.

#cosx+cosy=b rArr 2cos((x+y)/2)cos((x-y)/2)=b..........(2)#.

Dividing #(1)# by #(2)#, we have, #tan((x+y)/2)=a/b#.

Now, #cos(x+y)={1-tan^2((x+y)/2)}/{1+tan^2((x+y)/2)}#

#=(1-a^2/b^2)/(1+a^2/b^2)=(b^2-a^2)/(b^2+a^2)#.

Enjoy Maths.!