How do you find the first and second derivative of (ln(x^2-1))/x^2?

1 Answer
Aug 22, 2016

y'=[2{x^2-(x^2-1)ln(x^2-1)}]/(x^3(x^2-1).

y''=2/x^2{(3ln(x^2-1))/x^2-(x^2+1)/(x^2-1)^2}.

Explanation:

Let y=(ln(x^2-1))/x^2........(1)

:. x^2y=ln(x^2-1)=ln{(x+1)(x-1)}

x^2y=ln(x+1)+ln(x-1).

Diff. ing both sides w.r.t. x, we get,

x^2*y'+y(x^2)'=(ln(x+1))'+(ln(x-1))'.

:. x^2y'+y(2x)={1/(x+1)}(x+1)'+{1/(x-1)}(x-1)'.

:. x^2y'+2xy=1/(x+1)+1/(x-1)=(2x)/(x^2-1)..........(2)

:. y'=1/x^2[2x{1/(x^2-1)-y}], or, using (1) for y,

y'=2/x{1/(x^2-1)-(ln(x^2-1))/x^2}

Hence, y'=[2{x^2-(x^2-1)ln(x^2-1)}]/(x^3(x^2-1).

For y'', we rewrite (2), in the following more useful form :

x^2y'+2xy=1/(x+1)+1/(x-1).

Diff.ing, both sides w.r.t. x, we get,

x^2y''+y'(2x)+2(xy'+y)=-1/(x+1)^2-1/(x-1)^2

:. x^2y''+4xy'+2y=-{((x-1)^2+(x+1)^2)/((x+1)^2(x-1)^2)}

:. x^2y''+4xy'+2y=-(2(x^2+1))/(x^2-1)^2

Here, xy'=2{1/(x^2-1)-y}

:. x^2y''+4*2{1/(x^2-1)-y}+2y=-(2(x^2+1))/(x^2-1)^2

:. x^2y''+8/(x^2-1)-8y+2y=-(2(x^2+1))/(x^2-1)^2

:. x^2y''-6y= -(2(x^2+1))/(x^2-1)^2

:. x^2y''=6y-(2(x^2+1))/(x^2-1)^2=2{3y-(x^2+1)/(x^2-1)^2}

=2{(3ln(x^2-1))/x^2-(x^2+1)/(x^2-1)^2}

Finally, y''=2/x^2{(3ln(x^2-1))/x^2-(x^2+1)/(x^2-1)^2}.

Enjoy Maths.!