How do you use DeMoivre's theorem to simplify #(-sqrt3+i)^5#?

1 Answer
Aug 23, 2016

#(-sqrt3+i)^5=16(sqrt3+i)#.

Explanation:

To use DeMoivre's Theorem, we need to convert

#z=-sqrt3+i=x+iy# into Polar Form, i.e.,

#r(costheta+isintheta), where, r>0, &, theta in (-pi,pi]#.

#z=x+iy=r(costheta+isintheta)=rcistheta#

#rArr x=rcostheta, y=rsintheta, r=sqrt(x^2+y^2)#

#:. r=sqrt{(-sqrt3)^2+1^2}=2#

Hence, from #x=rcostheta, costheta=-sqrt3/2, "&, similarly,"# #sintheta=1/2#

#"clearly", theta=(5pi)/6#

Thus, #-sqrt3+i=2cis((5pi)/6)#.

Now, by DeMoivre's Theorem, #(rcistheta)^n=r^ncis(ntheta)#

In our case, #n=5, r=2,theta=(5pi)/6#

#:.(-sqrt3+i)^5=(2cis(5pi)/6)^5#

#=(2^5)(cis(5*(5pi)/6))#

#=32(cis(25pi)/6)#

#=32(cis(4pi+pi/6))#

#=32(cos(4pi+pi/6)+isin(4pi+pi/6))#

#=32(cos(pi/6)+isin(pi/6))#

#=32(sqrt3/2+1/2i)#

#=16(sqrt3+i)#.

Enjoy Maths.!