How do you simplify #(4+sqrt48)/4#? Algebra Radicals and Geometry Connections Multiplication and Division of Radicals 1 Answer Binayaka C. Aug 26, 2016 #1+sqrt3# Explanation: #(4+sqrt48)/4 = (4+sqrt(4*4*3))/4=(4+4sqrt3)/4= (cancel 4(1+sqrt3))/cancel4= (1+sqrt3)#[Ans] Answer link Related questions How do you simplify #\frac{2}{\sqrt{3}}#? How do you multiply and divide radicals? How do you rationalize the denominator? What is Multiplication and Division of Radicals? How do you simplify #7/(""^3sqrt(5)#? How do you multiply #(sqrt(a) +sqrt(b))(sqrt(a)-sqrt(b))#? How do you rationalize the denominator for #\frac{2x}{\sqrt{5}x}#? Do you always have to rationalize the denominator? How do you simplify #sqrt(5)sqrt(15)#? How do you simplify #(7sqrt(13) + 2sqrt(6))(2sqrt(3)+3sqrt(6))#? See all questions in Multiplication and Division of Radicals Impact of this question 1246 views around the world You can reuse this answer Creative Commons License