Question #bc6c7

1 Answer
Aug 27, 2016

Integrate by parts and exploit the fact the integral repeats itself. Answer is:

#I=1/4ln^2x+c#

Explanation:

The integral is equal to:

#I=intlnsqrt(x)/xdx#

Use #sqrt(x)=x^(1/2)# and #lnx^a=alnx#

#I=intlnx^(1/2)/xdx=int1/2lnx/xdx=1/2intlnx*1/xdx=#

#=1/2intlnx*(lnx)'dx#

Use integration by parts:

#I=1/2((lnx*lnx)-int(lnx)'*lnxdx)=#

#=1/2(ln^2x-int1/xlnxdx)=1/2ln^2x-1/2intlnx/xdx=#

#=1/2ln^2x-intlnx^(1/2)/xdx=1/2ln^2x-intlnsqrt(x)/xdx#

Noticing the last integral is equal to the original:

#I=intlnsqrt(x)/xdx#

Therefore:

#I=1/2ln^2x-I#

#I+I=1/2ln^2x#

#2I=1/2ln^2x#

#I=1/4ln^2x#

Adding the constant of integration:

#I=1/4ln^2x+c#