How do you find the derivative of #tan(arcsin(x))#?
1 Answer
Aug 28, 2016
Explanation:
Let
Then:
#x = sin(t)#
So:
#tan(arcsin(x)) = tan(t) = sin(t)/cos(t) = x/sqrt(1-x^2)#
So:
#d/(dx) tan(arcsin(x))#
#= d/(dx) (x (1-x^2)^(-1/2))#
#= (1-x^2)^(-1/2) + x*(-1/2)(1-x^2)^(-3/2)*(-2x)#
#= (1-x^2)(1-x^2)^(-3/2) +x^2(1-x^2)^(-3/2)#
#= 1/(1-x^2)^(3/2)#