How do you integrate #int (x^3+x^2+x+2)/(x^4+x^2)# using partial fractions?

How do you integrate #int (x^3+x^2+x+2)/(x^4+x^2)dx# using partial fractions?

1 Answer
Aug 28, 2016

#ln|x|-2/x-arc tanx+C#

Explanation:

Let #I=int(x^3+x^2+x+2)/(x^4+x^2)dx=int(x^3+x^2+x+2)/(x^2(x^2+1))dx#

On the first hand inspection, we find that we have no go but to use

the Method of Partial Fraction to decompose the Integrand, but,

#"The Nr."#

#=(x^3+x^2+x+2)=ul(x^3+x)+ul(x^2+1)+1#

#=x(x^2+1)+1(x^2+1)+1=(x^2+1)(x+1)+1#.

Hence, # (x^3+x^2+x+2)/(x^2(x^2+1))={(x^2+1)(x+1)+1}/(x^2(x^2+1))#

#={(x^2+1)(x+1)}/ (x^2(x^2+1))+1/(x^2(x^2+1))#

#=((x^2+1)(x+1))/(x^2(x^2+1))+1/(x^2(x^2+1))#

#=(x+1)/x^2+{(x^2+1)-x^2)/(x^2(x^2+1)#

#=x/x^2+1/x^2+(x^2+1)/(x^2(x^2+1))-x^2/(x^2(x^2+1)#

#=1/x+1/x^2+1/x^2-1/(x^2+1)#.

Therefore,

#I=int[1/x+2/x^2-1/(x^2+1)]dx#

#=ln|x|-2/x-arc tanx+C#

Enjoy maths.!