How do you convert the Cartesian coordinates #(-1/2, -sqrt(3)/2)# to polar coordinates?

1 Answer
Aug 30, 2016

Polar coordinates of #(-1/2,-sqrt3/2)# are #(1,(4pi)/3)#.

Explanation:

The relation between Cartesian coordinates #(x,y)# and polar coordinates #(r,theta)# is #x=rcostheta# and #y=rsintheta#.

As such #r=sqrt(x^2+y^2)# and hence for #(-1/2,-sqrt3/2)#,

#r=-sqrt((-1/2)^2+(-sqrt3/2)^2)=-sqrt(1/4+3/4)=sqrt1=1#

Hence #costheta=x/r=-1/2# and #sintheta=y/r=-sqrt3/2#.

Hence #theta# is in third quadrant and #theta=(4pi)/3#.

Therefore polar coordinates of #(-1/2,-sqrt3/2)# are #(1,(4pi)/3)#.