Calling #u = sin x# and #v = sin y# we have
#{
(u + v = a),
(sqrt(1-u^2)+sqrt(1-v^2) = b)
:}#
or
#{
(u + v = a),
(sqrt(1-(a-v)^2)+sqrt(1-v^2) = b)
:}#
squaring the second equation
#1-a^2-v^2-2av = b^2+1-v^2-2bsqrt(1-v^2)#
or
#2bsqrt(1-v^2) = b^2+a^2-2av#
squaring again
#4b^2(1-v^2)=(b^2+a^2)^2+4a^2v^2-4(a^2+b^2)av#
and
#4(a^2+b^2)v^2-4(a^2+b^2)av+(b^2+a^2)^2-4b^2=0#
Solving for #v# we obtain
#v = 1/2 (a pm abs(b)sqrt( 4 -(a^2 + b^2)))#
and
#u = a - v = 1/2 (a -(pm abs(b)sqrt( 4 -(a^2 + b^2))))#
Finally
#y = arcsin(1/2 (a + abs(b)sqrt( 4 -(a^2 + b^2))))# and
#x = arcsin(1/2 (a - abs(b)sqrt( 4 -(a^2 + b^2))))#