What is the integral of #int (tan(2x))^2#?
1 Answer
Aug 30, 2016
Explanation:
Note that
We have:
#inttan^2(2x)dx#
Recall that, through the Pythagorean identity,
#=int(sec^2(2x)-1)dx#
Split up the integral:
#=intsec^2(2x)dx-intdx#
#=intsec^2(2x)dx-x#
Now, let
#=1/2int2sec^2(2x)dx-x#
#=1/2intdu-x#
#=1/2u-x+C#
#=1/2tan(2x)-x+C#