What is the derivative of #f(x)=cos^6(2x+5)#?

1 Answer
Sep 1, 2016

#dy/dx=-12sin(2x+5)cos(2x+5)#

There are trig identities you could play with to simplify this solution further.

Explanation:

Using 'old fashioned' notation

Let # u= 2x+5 => (du)/dx = 2#

Let #v=cos(u) =>(dv)/(du)=-sin(u)#

Let #y=v^6 => (dy)/(dv)=6v^5#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Consider the product:

#dy/(cancel(dv))xx(cancel(dv))/(cancel(du))xx(cancel(du))/(dx) = dy/dx#

Putting this all together:

#dy/dx=6v^5xx(-sin(u))xx2#

So by substitution we have:

#dy/dx=6cos^5(2x+5)xx (-sin(2x+5))xx2#

#dy/dx=-12sin(2x+5)cos(2x+5)#
.